The fractional Laplacian has infinite dimension
نویسندگان
چکیده
منابع مشابه
The Extremal Solution for the Fractional Laplacian
We study the extremal solution for the problem (−∆)u = λf(u) in Ω, u ≡ 0 in R \ Ω, where λ > 0 is a parameter and s ∈ (0, 1). We extend some well known results for the extremal solution when the operator is the Laplacian to this nonlocal case. For general convex nonlinearities we prove that the extremal solution is bounded in dimensions n < 4s. We also show that, for exponential and power-like ...
متن کاملThe Pohozaev Identity for the Fractional Laplacian
In this paper we prove the Pohozaev identity for the semilinear Dirichlet problem (−∆)u = f(u) in Ω, u ≡ 0 in R\Ω. Here, s ∈ (0, 1), (−∆) is the fractional Laplacian in R, and Ω is a bounded C domain. To establish the identity we use, among other things, that if u is a bounded solution then u/δ|Ω is C up to the boundary ∂Ω, where δ(x) = dist(x, ∂Ω). In the fractional Pohozaev identity, the func...
متن کاملThe Hölder infinite Laplacian and Hölder extensions
In this paper we study the limit as p → ∞ of minimizers of the fractional W -norms. In particular, we prove that the limit satisfies a non-local and non-linear equation. We also prove the existence and uniqueness of solutions of the equation. Furthermore, we prove the existence of solutions in general for the corresponding inhomogeneous equation. By making strong use of the barriers in this con...
متن کاملFractional Laplacian in bounded domains.
The fractional Laplacian operator -(-delta)(alpha/2) appears in a wide class of physical systems, including Lévy flights and stochastic interfaces. In this paper, we provide a discretized version of this operator which is well suited to deal with boundary conditions on a finite interval. The implementation of boundary conditions is justified by appealing to two physical models, namely, hopping ...
متن کاملFractional Laplacian in conformal geometry
In this note, we study the connection between the fractional Laplacian operator that appeared in the recent work of Caffarelli and Silvestre and a class of conformally covariant operators in conformal geometry. © 2010 Elsevier Inc. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Partial Differential Equations
سال: 2019
ISSN: 0360-5302,1532-4133
DOI: 10.1080/03605302.2019.1663434